
Von: Gregory Haynes

Gesendet: Mittwoch, 13. April 2022 23:26

An: Sebastian Beutel

Betreff: RE: timeline macro questions

Hello,

I’m doing pretty well, we seem to be getting out of winter now and soon it will be the summer and festival season, so

it will be good to see that happening again.

I hope you are keeping well, I assume you might be doing something at Prolight and Sound in a couple of weeks (not

that I’m involved as I believe we are keeping things pretty low key).

I will try to explain what all these different time objects are:

Type Description

System.TimeSpan Is a general type built into the Microsoft

.NET Framework which stores a length of

time which can be retrieved as hours,

minutes, seconds, milliseconds either as

totals or as separate components. A lot of

our time values make use of this internally

and add additional properties.

Avolites.Acw.Titan.AcwTimeSpan This is the time value that we use for most

things such as fade times, release times

etc.. It is basically a System.TimeSpan plus

a field which indicates special values such

as AsIn, NotUsed, Global etc. which,

indicates that this isn’t a real value and

should be ignored or looked up elsewhere.

Avolites.Acw.Titan.TimecodeTime The name pretty much gives away what

this is for, this is basically a

System.TimeSpan but with an additional

field to indicate the frame rate and

whether or not it is enabled. We used to

change how we saved the frame value

depending on what the frame rate was

however more recently the time value is

always stored in milliseconds and it is

converted to the appropriate frame rate

only when we display it. This is usually

displayed in full with hours and minutes so

is usually preferred for larger time values.

Avolites.Titan.Controllers.Editor.Playbacks.ObservableTimecodeTime This is practically speaking identical to

Avolites.Acw.Titan.TimecodeTime

however provides some necessary linking

that ensures that whenever part of the

value is changed (even if it is just the

minutes or seconds part and not the whole

value) the necessary events trigger to

propagate the change. This is only relevant

the UI where you might be wheeling them

or typing in and when that happens this

ensures that the engine gets updated.

System.Int32 (int)

System.Single (float)

Sometimes just having a simple number

makes sense, either if it is a value being

typed in for the first time by the user or in

low level functions. However they are

generally avoided when passing data

around as they could mean different

things in different places, could be a

number of minutes, seconds or

milliseconds and that sort of ambiguity is

the sort of thing that leads to bugs.

I had a look at the UpdateTimelineViewProperties function and I don’t think it is really usable by WebAPI or

macros; you can blame me from 4.5 years ago for marking it as a menu function for some unknown reason. It isn’t

really possible to convert to or change System.TimeSpan values in WebAPI or macros, the best option would be to

change it so it uses our standard types, ideally the same as the corresponding context timeline properties.

What I can suggest as an alternative is taking advantage of the functions provided for the wheel view. This will

require changing the current ‘page’ of timeline wheels but doesn’t actually require the Timeline window to be open

or active and the wheels can still be showing attributes or connected playback etc..

To set the horizontal position to a specific time you can do the following:

ActionScript.SetProperty.Enum("Editor.Timelines.WheelView", "ScrollZoom")

Editor.Timelines.SetWheelValue(0,
Timecode.AsObservable(Timecode.MakeTimecodeTime(1, 0, 24, 0, false, 25)), false)

To set the zoom to the length of time you want to display:

ActionScript.SetProperty.Enum("Editor.Timelines.WheelView", "ScrollZoom")

Editor.Timelines.SetWheelValue(2, time:15, false)

The values for incrementing aren’t quite as straightforward but the following will move a screen full (i.e.

Editor.Timelines.ContextTimeline.ViewWidth) to the left:

ActionScript.SetProperty.Enum("Editor.Timelines.WheelView", "ScrollZoom")

Editor.Timelines.IncrementTriggerWheelParameter(0, 64, 0, true)

And to move to the right:

ActionScript.SetProperty.Enum("Editor.Timelines.WheelView", "ScrollZoom")

Editor.Timelines.IncrementTriggerWheelParameter(0, -64, 0, true)

You can adjust the second parameter as required, 64 is the number of wheel counts for a full rotation if you were

wondering where that comes from.

Vertical scrolling, second parameter is number of pixels:

ActionScript.SetProperty.Enum("Editor.Timelines.WheelView", "ScrollZoom")

Editor.Timelines.IncrementTriggerWheelParameter(1, 10, 0, true)

As it will limit scroll values that are too big or small you can scroll to the very beginning or end by making use of the

MaxVerticalOffset property:

Editor.Timelines.IncrementTriggerWheelParameter(1,
float:Editor.Timelines.MaxVerticalOffset, 0, true)

Editor.Timelines.IncrementTriggerWheelParameter(1, 0 -

float:Editor.Timelines.MaxVerticalOffset, 0, true)

Note SetWheelValue has no function for vertical scrolling as we didn’t expect people to enter that as a value

directly.

Incrementing the zoom goes in 5% increments or decrements, the second parameter determines the direction but is

otherwise ignored:

ActionScript.SetProperty.Enum("Editor.Timelines.WheelView", "ScrollZoom")

Editor.Timelines.IncrementTriggerWheelParameter(2, 1, 0, false)

ActionScript.SetProperty.Enum("Editor.Timelines.WheelView", "ScrollZoom")

Editor.Timelines.IncrementTriggerWheelParameter(2, -1, 0, false)

Enabling the fast option will change the increments to 15.8%.

Regarding the Timelines.ToggleTrackViewMode function, as far as I can tell it was never implemented, prior to

it being removed the function was entirely empty apart from a comment saying “TIMELINETODO”. Presumably we

thought that we wanted this function at some point but never got around to writing it and was subsequently

removed as it wasn’t doing anything. Unfortunately from what I can see the only way of changing the view mode of

the tracks is from within the Timeline window itself which means it is out of reach of macros and WebAPI. In

principle it would be possible to write that function but actually writing it would be more helpful than leaving it

empty.

Hopefully some of this information will be helpful to you.

Gregory

--

Gregory Haynes
Senior Developer

www.avolites.com

This email and any attachments to it may be confidential and are intended solely for the use of the individual to whom it is addressed.

If you are not the intended recipient of this email, you must neither take any action based upon its contents, nor copy or show it to anyone.

Please contact the sender if you believe you have received this email in error.

From: Sebastian Beutel

Sent: 11 April 2022 08:18

To: Gregory Haynes

Subject: timeline macro questions

Hi Gregory,

May I please bother you with a few more macro questions? I was helping a guy to do some timeline stuff. I.e. make

macros to set the zoom and offset of the timeline view, minimize tracks, etc. Here are the two macros in question:

 <macro id="rp.Macros.SetTimelineViewWidthTo120"

name="SetTimelineViewWidthTo120">

 <sequence>

 <step>ActionScript.SetProperty("EditorTimelines.ContextTimeline.ViewWid

th", time:120)</step>

 <step>Editor.Timelines.UpdateTimelineViewProperties(Timelines.ContextTi

meline.ViewTimeOffset, Timelines.ContextTimeline.ViewVerticaOffset,

Timelines.ContextTimeline.ViewWidth)</step>

 </sequence>

 </macro>

 <macro id="rp.Macros.ToggleTrackViewMode1" name="ToggleTrackViewMode1">

 <description>Toggle Track View Mode 1.</description>

 <sequence>

 <step>Timelines.ToggleTrackViewMode(timelineId1, trackId1)</step>

 </sequence>

 </macro>

The first macro is intended to set zoom and offset. However regardless which values I put in there it doesn’t work. I

tried numbers like

Editor.Timelines.UpdateTimelineViewProperties(0, 20, 120)

as well as times

Editor.Timelines.UpdateTimelineViewProperties(time:1, 20, time:120)

But neither works. The most interesting error was ‘Cannot convert type “Avolites.Acw.Titan.AcwTimeSpan” into type

“System.TimeSpan”.’ Is there a way how offset and width can be set by macro at all, and if so, how?

The second macro is even more interesting: the function ‘Timelines.ToggleTrackViewMode’ is mentioned

in the v14 API documentation, but has gone in v15, and the logs say the same (“The action script function was not

found…”). Again, is there a way to set or toggle track view modes in v15 at all?

Thanks in advance for a little help.

And another question only out of interest: what is the ‘observable’ property for timecodes? (We made a macro to set

the cursor to a specified position with

ActionScript.SetProperty("Editor.Timelines.ContextTimeline.CursorPosition",

Timecode.AsObservable(Timecode.MakeTimecodeTime(1, 00, 00, 00, false, 100)))

and I am just wondering what this additional thing is…

Best regards, Sebastian

