2025/10/28 07:45 12 Types

Types

All data - in particular properties and functions' parameters - need to be of a certain type. Essentially,
this is a convention you know from everyday's life. There are some information which are always a
number - e.g. the phone number. Then there are other information which are always words, e.g. a
person's name.

Furthermore, there are some sub-types. E.g. a phone number will always follow a specific pattern (per
country), a zip code - which in many countries is also a number - will follow another pattern. If you, by
accident, dialed a person's zip code instead of their phone number, most likely you will get no
connection (which at least gives you immediate fedback that something is wrong), but in rare cases
you might even get connected. But most likely not to th person you intended to speak to. Hence, the
most important lesson is: types matter. Passing the wrong type of a parameter to a function will lead
to wrong results, and most likely to errors (in which case usually the macro does nothing).

And: there are more complex types as well. Imagine the data type 'address'. An address in real life
comprises of a street name, a house number, a zip code, a city, and maybe a few more details. in
general, such complex data types are refered to as objects or structures, and it is important to know
the details of how they are composed.

Here, we only very briefly try to explain the various types you might come across when writing
macros. Please feel free to refer to countless programming literature if you are interested in more
details.

Casting - type conversion

As types are that important to adhere to, and as functions are very picky about what they want to get
as input and what they maybe return, there are means to convert data from one type to another. This
is called type casting. While this is a good thing in order to provide the correct data type, this invokes
the next challenge: conversion rules. Some are easy to understand, e.g. casting an integer value to a
float. Others aren't: what rule would you suggest to cast the string “Moving Light” into an integer
value? But usually you shouldn't need to bother. Just use the appropriate casting function, e.g. in the
example changexfade.

Datatypes in this Wiki

Here is a list of the types covered in this wiki:

Boolean

Double

e Enum
EventPropergation
Flag

Float

AVOSUPPORT - https://www.avosupport.de/wiki/


https://www.avosupport.de/wiki/macros/namespace/math.cast
https://www.avosupport.de/wiki/macros/example/changexfade
https://www.avosupport.de/wiki/macros/type/boolean
https://www.avosupport.de/wiki/macros/type/double
https://www.avosupport.de/wiki/macros/type/enum
https://www.avosupport.de/wiki/macros/type/eventpropergation
https://www.avosupport.de/wiki/macros/type/flag
https://www.avosupport.de/wiki/macros/type/float

Last update: 2017/10/29 16:35 macros:types https://www.avosupport.de/wiki/macros/types?rev=1509294948

e |[Enumerable
Int32

List'1

Null

Object
Single

e String

* Void

From:
https://www.avosupport.de/wiki/ - AVOSUPPORT

Permanent link:
https://www.avosupport.de/wiki/macros/types?rev=1509294948

Last update: 2017/10/29 16:35

https://www.avosupport.de/wiki/ Printed on 2025/10/28 07:45


https://www.avosupport.de/wiki/macros/type/ienumerable
https://www.avosupport.de/wiki/macros/type/int32
https://www.avosupport.de/wiki/macros/type/list_1
https://www.avosupport.de/wiki/macros/type/null
https://www.avosupport.de/wiki/macros/type/object
https://www.avosupport.de/wiki/macros/type/single
https://www.avosupport.de/wiki/macros/type/string
https://www.avosupport.de/wiki/macros/type/void
https://www.avosupport.de/wiki/
https://www.avosupport.de/wiki/macros/types?rev=1509294948

	Types
	Casting - type conversion
	Datatypes in this Wiki


